

102

Abstract— The intelligent Databases (IDB) are originated from

the integration of databases technologies with artificial intelligence
technologies. The IDB are characterized by the presence of stored
rules in a rules base and facts stored in a facts base, all together
conforms the knowledge base, in which different forms of reasoning
are applied. In general, an ontology is a knowledge base that
describes the concepts of a domain, their properties and their
relations, providing a common vocabulary in a defined area. This
article proposes an ontology for IDB that describes the concepts,
operations and restrictions of these databases. Also, at the end of this
paper we present an utilization example and its implementation using
Protégé.

Keywords— Ontology, Intelligent databases.

I. INTRODUCTION
he intelligent databases (IDB) have as general purpose

the generated and the discovery of information and
knowledge. Among these types of databases we include the
active, deductive, knowledge and fuzzy databases. In general,

Manuscript received October 9, 2006. Revised version received May

1, 2007; Second Revised June 30,2007, work was supported in part by the U.S.
Department of Commerce under Grant BS123456 (sponsor and financial
support acknowledgment goes here). Paper titles should be written in
uppercase and lowercase letters, not all uppercase. Avoid writing long
formulas with subscripts in the title; short formulas that identify the elements
are fine (e.g., "Nd–Fe–B"). Do not write "(Invited)" in the title. Full names of
authors are preferred in the author field, but are not required. Put a space
between authors' initials.

F. A. Author is with the National Institute of Standards and Technology,
Boulder, CO 80305 USA (corresponding author to provide phone: 303-555-
5555; fax: 303-555-5555; e-mail: author@ boulder.nist.gov).

S. B. Author, Jr., was with Rice University, Houston, TX 77005 USA. He
is now with the Department of Physics, Colorado State University, Fort
Collins, CO 80523 USA (e-mail: author@lamar. colostate.edu).

T. C. Author is with the Electrical Engineering Department, University of
Colorado, Boulder, CO 80309 USA, on leave from the National Research
Institute for Metals, Tsukuba, Japan (e-mail: author@nrim.go.jp).

the IDB are the natural evolution of the traditional databases,
not only because they allow the manipulation of the data, also
of the cognitive elements in form of facts and rules. One
essential aspect of these databases are the possibilities of using
techniques to discover knowledge, such as data mining
techniques; all this permit learning patterns and data analysis
strategies, as well as making classification and recognition,
among others.

 The IDB systems are characterized by using an artificial
intelligent technique that supports different reasoning
mechanisms, they have a similar architecture to the expert
systems that consist of a fact base, a rule base and must have
persistence of the fact base.

In this work, we design an ontology for an IDB that allows
describing it as a set of representational terms of their
different components. In this ontology, the definitions
associate types, relations, functions, among others, in the
universe of the speech of the IDB, in order to describe its
meaning, its components, operation and restrictions. The
reason of using ontologies is that they define concepts and
relations within a taxonomic frame, whose conceptualization
is represented in a formal, legible and usable way. This way,
ontology allows a common and shared understanding of a
domain [3, 5].

II. THEORETICAL BACKGROUND

A. Intelligent Databases
In [9] defines IDB as “a database that contains knowledge

about the content of their data. A set of validation criteria are
stored with each data, for example maximum and minimum
value or a list of the possible input”. Particularly, inside the
concept of IDB the following technologies are included:
knowledge based systems or experts systems, deductive

A General Ontology for Intelligent Database
Muñoz Ana,2, Aguilar Jose2

1Departamento de Tecnología, Área Informática

Instituto Universitario Tecnológico de Ejido

2Centro de Estudios en Microelectrónica y Sistemas Distribuidos (CEMISID)

Universidad de Los Andes

VENEZUELA

anamunoz@ula.ve, aguilar@ula.ve http://www.ula.ve/cemisid

T

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

 103

database and active database, which are described in the next
paragraphs.

1) Knowledge based systems
The Knowledge Based Systems (KBS) are applications than

generate satisfactory solutions o answers to problems that
require a reasoning by computer that involves knowledge of
some type. Some type of Knowledge can be facts (that express
valued proposals) or rules [2, 4]. The KBS construct its
reasoning to solve problems concatenating affirmations and
rules in line of reasoning. This reasoning lines show how a
supposition set and specific set of assertions and rules produce
a particular conclusion. Some of the KBS basic characteristics
are the implicit representation of knowledge, the capacity of
independent reasoning of the specific application, the capacity
of explaining their conclusions and the reasoning process. The
KBS base their yield on knowledge quantity and quality in a
specific domain [2, 4]. The main elements of the knowledge
based systems are: i) Knowledge base (rules and facts): It’s a
Knowledge representation of the system domain, ii) Inference
Machines: It’s a reasoning process from input data taking like
the source of this process the knowledge base. iii) Interface
with the user: inputs and outputs of the system, generally
including answers and explanation mechanisms.

2) Deductive Databases
A deductive data base consists of two components:

• A dataset, called facts, representing specific
information given by the user; these data are called
collectively an extensional database (EDB).

• A set of inference rules, called rules, codified
according to the domain knowledge, from which data
can be derived using the facts; these rules are referred
as intentional data base (InDB).

The different architectures for deductive databases are
categorized according to the cooperation between the InDB
and the EDB [2]: i) a homogenous architecture, in which are
used a simple integrated system to manipulate the EDB and
the InDB, and the deductive reasoning is made on them. ii) A
heterogeneous architecture, in which are used relational
database to manage an EDB, and a logical programming
system is used to make a deductive reasoning.

3) Active Databases
An active database reacts automatically to events and

supports the ECA rules (Event-Condition-Action). The
occurrence of several types of events (transition, time events
and external signals) shoots the evaluation of the conditions.
If an evaluated condition is certain it carries out the action [1].

 In general, each time it detects the occurrences of an
event it notifies to the responsible component of the rule
execution, this is called event signaling. Therefore, all the
rules that are defined to respond to this event will be executed.
The rule’s execution implicates condition evaluation and
action execution.

 An active database has all the characteristics of a passive
database (model, query language, multi-user access and
recuperation characteristics). The use of ECA rules implies the
following characteristics:

• Event types. A type event (description of event, pattern
and definition) describes situations that have a reaction.
An event type could be primitive or composed. A
primitive event type defines elemental occurrences, for
example: method’s invocations, data modification,
transactions, etc. The composed event type is defined as
combinations of others events, primitive and composed,
using a set of events constructors such as disjunction,
conjunction, sequence, etc. The events occurrences are the
instances of the event type.

• Meaning of the conditions. A condition formulates in
which status the database must execute the action. An
action formulates the reaction to an event and is executed
after rules fire. An action could contain data modification,
transaction operations, methods/ procedure call, etc.

B. Ontologies
A definition of ontology made in database terms, is the one

that Weigand offers [3, 5] “An ontology is a database that
describes the world’s concepts of specific domain, some of
their properties and how these concepts relate among them”.
The knowledge represented inside an ontology is formalized
trough five components:
• Concepts or classes: they are the ideas to formalize. They

are all the important ideas relevant to a certain domain of
application and they can be organized in taxonomies.
They can be descriptions of objects, tasks, functions,
actions, strategies, groups, etc. For example, the animal
concept.

• Relations: Represent the interaction between classes, and
are defined as a Cartesian product subgroup. Functions:
They are special relation cases, where it generates
elements by mean of function calculation. For example:
Price_Object= value+revenue+tax

• Axioms: They are used to model sentence that always are
going to be certain. They are used to represent
knowledge. They will be declaring theorems that must
fulfill ontology elements. That is, they are defined
theorems about the relations that all the elements of an
ontology must have.

 Van Heijst [10] proposes an ontology classification
according to the concept to describe and their use:
• Terminological: specified terms used to represent speech

universe knowledge. Usually they are used to unify
vocabulary in a certain domain.

• Information: It offers a structure for the standards
information storage.

• Knowledge Modeled: They specify related concepts to the
knowledge. Contains a rich internal structure and usually
they are fit to the particular use of the knowledge they
describe.

III. ONTOLOGY FOR INTELLIGENT DATABASE
We will consider inside the IDB: the active database, the

deductive database and the Knowledge based systems [6, 7,

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

104

8]. Figures 1 shows an ontological scheme for the IDB, from
the taxonomic point of view, where concepts and relations are
shown. The concepts are each of the node, the relations are the
etiquettes on arrows. On the other hand, functions and axioms
are represented through the first order predicate logic
sentence. Those are shown on the tables. Now we present the
concepts and relations of the proposed ontology for the IDB.

Concepts: INTELLIGENTDATABASE, IDBCONCEPTS,
IDBOPERATIONS, IDBRESTRICTIONS

Relations: has

Figure 1. Ontological Scheme for IDB
The IDB have concepts that define the elements that

conform it, operations that can be made and restrictions that
define rules behavior. Table 1 shows the sentence that
conform the ontological general scheme of the IDB. The IDB
has the following attributes:

Intelligent Database (ID_BDI, Name _BDI, Address,
Domain, Scheme, Model), where:

ID_BDI: IDB identificator, it is unique and allows
identifying each database

Name_BDI: database name
Address: database electronic address that define the place

where the intelligent database is located for possible
actualizations and queries.

Domain: IDB domain, allows identifying in which data and
knowledge areas they work.

IDB Scheme: description of the database, where it shows
tables, datatype and relations among them, like it dictionary.

IDB Modeling: data model used by the IDB to describe
schemes, such as relational, oriented object or semantic
model, among others.

TABLE I
ONTOLOGICAL SCHEME OF THE IDB LIKE AXIOMS

 The intelligent databases have concepts that define the

elements that compose it, operations can perform and
restrictions that define the behaviours of the rules and
operations of intelligent databases.

A. Intelligent Database Concepts
In general, the IDB has two concepts: knowledge base and

a reasoning mechanism. Thus, are knowledge based systems
that by means of a reasoning scheme determining the rules
that are activated until obtaining an answer to a certain input
(query, event, etc.).

Knowledge Base: It’s a facts and rules collection. The facts
are specified in a similar way as the relations in a relational
database. The rules can be referred as “situation-action” or
“if-then”. The rules can generate a network of them according
to the associations among them.

Reasoning Mechanisms: It’s a reasoning process from the
input data and the knowledge base. This mechanism is generic
in the sense that it can be applied to different domains only by
changing the knowledge base. The reasoning scheme can be
deductive, inductive or abductive. The deductive reasoning
can be from general to particular or from the premise to the
logical conclusion. The abductive reasoning is a reasoning
method used for general explication. The abduction starts with
a conclusion and end derivating the conditions that could
make valid this conclusion. The abduction tries to explain the
conclusion. The inductive reasoning is the beginning from
particular facts in order to reach a general conclusion [2, 3]. In
figure 2 the ontological scheme of IDB concepts shown.

Figure 2. IDB Concepts for an Ontological Scheme

Next, table 2 shows the axioms for the IDB Concepts
TABLE II

AXIOMS FOR IDB CONCEPTS

B. Intelligent Database Operations
The IDB operations are made trough the reasoning

machine, which controls the rules fired. The cycle starts with
an event that can be a query or an update and ends when there
are no applicable rules. The reasoning machine searches for
the rules that fulfill the condition. Then, the rules execute the
actions that could involve changes on the knowledge and
environment database. There are different reasoning
strategies, according to the type of reasoning that is used:

 INTELLIGENTS
DATABASE

IDB_CONCEPTS

has

IDBOPERATIONS
IDB_RESTRICTIONS

has
has

INTELLIGENTS
DATABASE

IDB_CONCEPTS

has

IDBOPERATIONS
IDB_RESTRICTIONS

has
has

INTELLIGENTDB
CONCEPTS

has
has

KNOWLEDGE
BASE REASONING

MECHANISM

has

RULES

has

CONDITION ACTION

has

FACT

ASSOCIATION
CONNECTIONS

NETWORK
RULES

has
has

is a

INDUCTIVE
REASONING

DEDUCTIVE
REASONING

ABDUCTIVE
REASONING

is a
is a

is a

COMBINING
PATTERNS

is a

INTELLIGENTDB
CONCEPTS

has
has

KNOWLEDGE
BASE REASONING

MECHANISM

has

RULES

has

CONDITION ACTION

has

FACT

ASSOCIATION
CONNECTIONS

NETWORK
RULES

has
has

is a

INDUCTIVE
REASONING

DEDUCTIVE
REASONING

ABDUCTIVE
REASONING

is a
is a

is a

COMBINING
PATTERNS

is a

V x AbductiveReasoning(x) => is_a(x,
ConclusionOfHypothesis)

The abductive reasoning tries to explain the
conclusion

V x InductiveReasoning(x) => is_a(x,
ConclusionOfFacts)

In the inductive reasoning of the conclusions are
obtained of the facts

V x DeductiveReasoning(x) =>
is_a(x,ConclusionOfAssumptions)

In the deductive reasoning the conclusion is
obtained of the Assumptions

V x ReasoningMechanism(x) => is_a(x,Deductive) V
is_a(x,Inductive) V is_a(x,Abductive)

A reasoning mechanism is a deductive, inductive
and abductive

V x Conditions(x) => is_a (x,CombiningFacts) Λ is_a
(x,ActivationRules)

A condition is a combination of facts that occur
to activate Rule

V x AssociationConnections (x) => is_a (x,
NetworkRules)

An AssociationConnections is a network rules

V x Rule(x) => has(x,Condition) Λ has(x,Action) A rule has a condition, and has action

V x KonwledgeBase(x) => has(x,Rules) Λ
has(AssociationConnections) Λ has(x,Facts)

A knowledge base has rules, has association
connections and facts

V x IDBConcept(x) => has(x,KnowledgeBase) Λ
has(x,ReasoningMechanism)

A IDB concept has a knowledge base and a
reasoning mechanism

LPOSentences

V x AbductiveReasoning(x) => is_a(x,
ConclusionOfHypothesis)

The abductive reasoning tries to explain the
conclusion

V x InductiveReasoning(x) => is_a(x,
ConclusionOfFacts)

In the inductive reasoning of the conclusions are
obtained of the facts

V x DeductiveReasoning(x) =>
is_a(x,ConclusionOfAssumptions)

In the deductive reasoning the conclusion is
obtained of the Assumptions

V x ReasoningMechanism(x) => is_a(x,Deductive) V
is_a(x,Inductive) V is_a(x,Abductive)

A reasoning mechanism is a deductive, inductive
and abductive

V x Conditions(x) => is_a (x,CombiningFacts) Λ is_a
(x,ActivationRules)

A condition is a combination of facts that occur
to activate Rule

V x AssociationConnections (x) => is_a (x,
NetworkRules)

An AssociationConnections is a network rules

V x Rule(x) => has(x,Condition) Λ has(x,Action) A rule has a condition, and has action

V x KonwledgeBase(x) => has(x,Rules) Λ
has(AssociationConnections) Λ has(x,Facts)

A knowledge base has rules, has association
connections and facts

V x IDBConcept(x) => has(x,KnowledgeBase) Λ
has(x,ReasoningMechanism)

A IDB concept has a knowledge base and a
reasoning mechanism

LPOSentences

V x IDB(x) => has(x, IDBConcepts) Λ
has(x, IDBOperations) Λ has(x,
IDBRestrictions)

A IDB has concepts, operations and
restrictions

LPOSENTENCE

V x IDB(x) => has(x, IDBConcepts) Λ
has(x, IDBOperations) Λ has(x,
IDBRestrictions)

A IDB has concepts, operations and
restrictions

LPOSENTENCE

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

 105

classically it could be linking forward or linking backward
type. The linking forward type comes from facts to fulfill
conditions and execute action (creating new facts). The
linking backward comes from desirable states and tries to
fulfill the necessary conditions to get to them [2].

 The rules execution semantic depends on how to execute
the rules [1]. There are three ways of execution: immediate,
differed, and disconnect. Under the immediate way the rule is
process as fast as possible, under the differed way the rule is
process by the end of the transaction, under the disconnected
way the rule is processed out of the transaction as a part of a
separate transaction.

Figure 3. IDB Operational Ontological scheme

Next, on table 3 are shown the IDB Operational axioms.

TABLE III

IDB OPERATIONAL AXIOMS

C. Intelligent Database Restrictions
The IDB restrictions come according to the following

conditions: a) If simultaneous firing rules arise, which is when
an event or query has different associate rules and the system
allows only one rule to activate. It can be solved by: random
selection, use of priorities, establishing time activation of the
rule, etc. b) If contradictions between rules arise, this is when
an event or query firing two rules and each one generates an
action which is the negation of the action generated by the
other rule. In this case, that can be solved inhibiting the
activation of some of them.

Figure 4. Ontological Scheme of IDB Restrictions

TABLE IV
 AXIOMS OF THE IDB RESTRICTIONS

IV. CASE OF STUDY
To continue, a system intelligent of registration for a

university is described, which is based on an IDB to manage
the systems data. For these descriptions we will use the
ontological frame proposed in this paper. We will call the
system, Registration Intelligent System (RIS).

A. General Description
The RIS contains a knowledge base, which will be the IDB

base, conformed by a fact base of students, and a rules base to
make the students registration. Some examples of the
information contained in them are: The facts base store
students data, courses to attend, student’s academic history,
among others. The rules base stores rules that determinate the
conditions in which can accept the student’s registration in
different courses that are offered. Some examples are:

a. Rule to establish the student register order, i.e.:
IF average student is superior or equal than 18 THEN

register in the first established date.
IF average student is between 18 y 15, THEN register in

the second established date.
b. Rules that allows the registration of the students

according to an established status (new or regulars students,
etc,). For example:

IF student is regular THEN the credit numbers to inscribe
is bigger than 12

IF the student is new THEN assign the first semester
courses

c. Rules that establish the capacity of students in each
course. For example:

IF computers have a laboratory THEN number of
students=24

IF Analysis doesn’t require a laboratory THEN number of

RULES
INTERPRETER

has

is a

is a
is a

has

is ais a

has

REASONING
MECHANISM

ACTIVATION
WAYCONDITION

SELECTION

DURING
TRANSACTION

RULES
DEACTIVATOR

has

LINKING
TOWARDS

LINKING
BACKWARDS

END OF
TRANSACTION

is a

INDUCTIVE
REASONING

INTELLIGENTDB
OPERATIONS

is a

IN OTHER
TRANSACTION

IMMEDIATE DIFFERED DISCONNECTED

is a is ais a

DEDUCTIVE
REASONING

ABDUCTIVE
REASONING

is a

is a

RULES
INTERPRETER

has

is a

is a
is a

has

is ais a

has

REASONING
MECHANISM

ACTIVATION
WAYCONDITION

SELECTION

DURING
TRANSACTION

RULES
DEACTIVATOR

has

LINKING
TOWARDS

LINKING
BACKWARDS

END OF
TRANSACTION

is a

INDUCTIVE
REASONING

INTELLIGENTDB
OPERATIONS

is a

IN OTHER
TRANSACTION

IMMEDIATE DIFFERED DISCONNECTED

is a is ais a

DEDUCTIVE
REASONING

ABDUCTIVE
REASONING

is a

is a

V x Disconnect(x) => is_a(x,
ProcessingRuleInOtherTransaction)

The activation way of the disconnect rule is
when the rule is process as another transaction

V x Differed(x) => is_a(x,
ProcessingRulebytheEndOfTransaction)

The differed activation way is the processing
of the rule by the end of transaction

V x Immediate(x) => is_a(x,ProcessingRuleinTransaction)The immediate activation way is the
processing of the rule in transaction

V x ActivationWay(x) => is_a (x, Immediate) V is_a
(x,Differed) V is_a(x,Disconnected)

The activation way is immediate, differed or
disconnected

V x ConditionSelection(x) => is_a(x,LinkingToward) V
is_a(x,LinkingBackward)

The condition selection is a linking toward or
linking backward

V x RulesExecuter(x) => has(x,ConditionSelection) Λ
has(x,ActivationWay)

The rules executer has a condition selection
and a activation way

V x RuleInterpreter(x) => is_a(x,DeductiveReasoning) V
is_a(x,InductiveReasoning) V is_a(x,AbductiveReasoning)

A rule interpreter is a deductive, inductive and
abductive reasoning.

V xReasoningMechanism(x) => is_a(x,RuleInterpreter) V
is_a(x,RuleExecuter) V is_a(x,RuleDeactivator)

A Reasoning Mechanism is a rules interpreter,
a rules executer, and a rules deactivator

V xIDBOperations(x) => is_a (x,ReasoningMechanism)An IDB operation is a reasoning mechanism

LPOSENTENCE

V x Disconnect(x) => is_a(x,
ProcessingRuleInOtherTransaction)

The activation way of the disconnect rule is
when the rule is process as another transaction

V x Differed(x) => is_a(x,
ProcessingRulebytheEndOfTransaction)

The differed activation way is the processing
of the rule by the end of transaction

V x Immediate(x) => is_a(x,ProcessingRuleinTransaction)The immediate activation way is the
processing of the rule in transaction

V x ActivationWay(x) => is_a (x, Immediate) V is_a
(x,Differed) V is_a(x,Disconnected)

The activation way is immediate, differed or
disconnected

V x ConditionSelection(x) => is_a(x,LinkingToward) V
is_a(x,LinkingBackward)

The condition selection is a linking toward or
linking backward

V x RulesExecuter(x) => has(x,ConditionSelection) Λ
has(x,ActivationWay)

The rules executer has a condition selection
and a activation way

V x RuleInterpreter(x) => is_a(x,DeductiveReasoning) V
is_a(x,InductiveReasoning) V is_a(x,AbductiveReasoning)

A rule interpreter is a deductive, inductive and
abductive reasoning.

V xReasoningMechanism(x) => is_a(x,RuleInterpreter) V
is_a(x,RuleExecuter) V is_a(x,RuleDeactivator)

A Reasoning Mechanism is a rules interpreter,
a rules executer, and a rules deactivator

V xIDBOperations(x) => is_a (x,ReasoningMechanism)An IDB operation is a reasoning mechanism

LPOSENTENCE

 INTELLIGENTDB
RESTRICTION

SIMULTANEOUS FIRING CONTRADICTION

is a is a

INTELLIGENTDB
RESTRICTION

SIMULTANEOUS FIRING CONTRADICTION

is a is a

V x ContradictionBetweenRules (x) =>
is_a(x,InhibitingActivactiondeRule)

The contradiction between rules is
solved inhibiting the rule activation

V x SimultaneousFiringOfRules (x) =>
is_a(x,RandomSelectionofRules) V
is_a(x,UseOfPriorities) V is_a(x,FixedActivationTime)

In a simultaneous firing of rules a
random selection of rules is made, the
use of priorities, or fixed the activation
time of the rule

V x IDBRestrictions(x) =>
is_a(x,SimultaneousFiringOfRules) V
is_a(x,ContradictionBetweenRules)

The IDB restrictions occur for a
simultaneous firing or contradiction
between rules

LPOSentence

V x ContradictionBetweenRules (x) =>
is_a(x,InhibitingActivactiondeRule)

The contradiction between rules is
solved inhibiting the rule activation

V x SimultaneousFiringOfRules (x) =>
is_a(x,RandomSelectionofRules) V
is_a(x,UseOfPriorities) V is_a(x,FixedActivationTime)

In a simultaneous firing of rules a
random selection of rules is made, the
use of priorities, or fixed the activation
time of the rule

V x IDBRestrictions(x) =>
is_a(x,SimultaneousFiringOfRules) V
is_a(x,ContradictionBetweenRules)

The IDB restrictions occur for a
simultaneous firing or contradiction
between rules

LPOSentence

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

106

students=45
d. Rules that allow the registration of courses according to

the precedent among them. For example:
IF Course System Design approved THEN Register

Language and Semantics
e. Exception Rules to register student, i.e.:
IF student last semester and ask parallel courses (courses

with precedent relation among them) THEN accept parallel
f. Rules to open new courses, for example:
IF request for new course THEN verify if there is a

professor
IF there is a professor THEN Check if there is a classroom
IF there is a classrooms THEN open new courses

 Next, the IDB is described using our ontological

framework.

B. Conceptual Description of the Intelligent Database
using our ontological frame
Through the ontological framework for IDB, the RIS concepts
and components are identified. The table 5 shows the use of
our ontological framework in this case. It describes some of
the conceptual components of the IDB's RIS as described in
section 3.1 and figure 2. The Intelligent Database attributes
are:
ID_IDB:DBI01
Name_IDB: Registration
Address: www.university.registrations
Domain: Academic
Scheme: a) Facts Base conform by: STUDENTS,
CURRICULUM, CARREERS, GRADES, TEACHERS,
CLASSROOMS, REGISTRATION, and Rules Base Rules
Base, which contain the conditions under which we can
authorize registration of students in the different courses
offered, as well as managing the different situations (see
previews examples of rules).
Model: Oriented Object Model is used to model schemes.

TABLE V
 DBI CONCEPTUAL COMPONENTS SCHEME UNDER STUDY USING OUR

ONTOLOGICAL CONCEPT SCHEME.

C. Example of operations over the RIS
Following, we will describe examples of operation that can

be made with the RIS, for which we use the ontological
framework of section III B.

1) Student registration in a course
In this section we explain the student inscription in a given

course. If the event that activates the knowledge base is
student registration, RIS must verify if the student and the
courses that the student wants to register exists, among other
things. Then, the reasoning mechanism starts activating rules
that allows making the registration.

TABLE VI
 OPERATIONS IN THE RIS TO REGISTER A STUDENT

 Other rules that must activate to inscribe the student are

those that verify the available courses, the courses capacity,
etc.

2) Opening a Course
This second operation is opening a course. To open a new

course it is necessary to check that there is such course in the
program. Specifically, we have a situation where two rules
can be executed simultaneously, but we need to choose one of
them. The sentences to be formulated to perform this
operation are shown in the following table.

TABLE VII
OPENING COURSES

The system deducing that to
be doing.
Happening Event “Register
Request” to activate rules:
that to establish “Register
order by average of
student” and “Courses of
Programs”

V x ReasoningMechanism(x) =>
is_a(x,Deductive)
For example:
V x RequestRegister(x) => has (x,
RulesRegisterOrder) Λ has (x,
RulesCoursesPrecedent) Λ…]

Reasoning mechanism is deductive

For de Rule
“RuleOfOrderOfRegistratio
n”: has the EVENT firing
Register Request with
CONDITION Average
Student to execute
ACTION Register Student

V x Rule(x) => has(x,Conditión) Λ
has(x,Action)
For example:
V x RuleOfOrderOfRegistration(x) =>
has(x,CONDITION(RegisterRequest
ANDStudentselectbyAverage)) Λ
has(x,ACTION(RegisterDate))

Rules have a condition and action

DBI component descriptionV x KnowledgeBase(x) =>
[has(x,RulesOrderRegistration) Λ
has(x,RulesStatusStudents) Λ
has(x,RulesOfCoursesOrder) Λ
has(x,RulesExceptionRegister) Λ
has(x,RulessCapacityOfCourses) Λ has (x,
RulesCoursesPrecedent) Λ …] Λ [has(x,
StudentData) Λ has(x,ApprovedCourses) Λ
has(x, CoursesToRegister) Λ …]

The Knowledge Base has rules and facts.
The rules base is conformed by: Rule to

establish the student register order, Rules that
allow registration of courses according to the
precedent among them, Rules that establish the
capacity of students in each course, Exception
Rules to register student, Rules to open new
courses, etc.
The fact base is conformed by: student data,
approved courses, courses to enroll, etc.

Description of SystemV x ConceptBDIntelligent(x) =>
has(KBRIS,KnowledgeBase) Λ
has(RMRIS,ReasoningMechanism)

The IDB has a knowledge base and a
reasoning mechanism

CommentaryLPOConcepts

The system deducing that to
be doing.
Happening Event “Register
Request” to activate rules:
that to establish “Register
order by average of
student” and “Courses of
Programs”

V x ReasoningMechanism(x) =>
is_a(x,Deductive)
For example:
V x RequestRegister(x) => has (x,
RulesRegisterOrder) Λ has (x,
RulesCoursesPrecedent) Λ…]

Reasoning mechanism is deductive

For de Rule
“RuleOfOrderOfRegistratio
n”: has the EVENT firing
Register Request with
CONDITION Average
Student to execute
ACTION Register Student

V x Rule(x) => has(x,Conditión) Λ
has(x,Action)
For example:
V x RuleOfOrderOfRegistration(x) =>
has(x,CONDITION(RegisterRequest
ANDStudentselectbyAverage)) Λ
has(x,ACTION(RegisterDate))

Rules have a condition and action

DBI component descriptionV x KnowledgeBase(x) =>
[has(x,RulesOrderRegistration) Λ
has(x,RulesStatusStudents) Λ
has(x,RulesOfCoursesOrder) Λ
has(x,RulesExceptionRegister) Λ
has(x,RulessCapacityOfCourses) Λ has (x,
RulesCoursesPrecedent) Λ …] Λ [has(x,
StudentData) Λ has(x,ApprovedCourses) Λ
has(x, CoursesToRegister) Λ …]

The Knowledge Base has rules and facts.
The rules base is conformed by: Rule to

establish the student register order, Rules that
allow registration of courses according to the
precedent among them, Rules that establish the
capacity of students in each course, Exception
Rules to register student, Rules to open new
courses, etc.
The fact base is conformed by: student data,
approved courses, courses to enroll, etc.

Description of SystemV x ConceptBDIntelligent(x) =>
has(KBRIS,KnowledgeBase) Λ
has(RMRIS,ReasoningMechanism)

The IDB has a knowledge base and a
reasoning mechanism

CommentaryLPOConcepts

V x ActivationWay(x) => is_a (x, Immediate) V
is_a (x,Differed) V is_a(x,Disconnected)
(Axiom Table 3)

V x ActivationWayRIS (x) => is_a(x,InmediateRulesOfRIS)The activation Way of rules of RIS is immediate

V x RulesExecuter(x) =>
has(x,ConditionSelection) Λ
has(x,ActivationWay)
V x Rule(x) => has(x,Condition) Λ has(x,Action)
(Axioms Tables 2, 3)

V x RuleExecute(SelectionCourses) => has(x, ApplicationFor
Registration) Λ has(x, ActivationWay)
V x SelectionCourses(x) => Λ has(x, CONDITION (Courses to
Register, Courses Approved, Courses Precedence, Capacity
Courses, status Student, etc.)) Λ has(x,ACTION (Make
Registration))

Example of RulesSelectionCourses
IF SelectionCourses THEN RegisterStudent

V x RulesExecuter(x) =>
has(x,ConditionSelection) Λ
has(x,ActivationWay)
V x Rule(x) => has(x,Condition) Λ has(x,Action)
(Axioms Tables 2 and 3)

V x RulesExecuter (RulesOrderRegister) => has(x,
ApplicationFor Registration) Λ has(x,ActivationWay)
V x RegisterOrder(x) => has(x,
CONDITION(SelectionStudentByAverage)) Λ
has(x,ACTION(Set dates Registration
))

Example RulesRegisterOrder
IF SelectionStudentand Average THEN
Registration Dates Set

V x ConditionSelection(x) =>
is_a(x,LinkingToward) V
is_a(x,LinkingBackward)
(Axiom Table 3)

V x ApplicationFor Registration (x) => is_a(x, LinkingToward)
V x ApplicationFor Registration (x) => is_a (x,
RulesRegisterOrder) Λ …Λ is_a(x,RulesSelectionCourses)

Implementation Rule which initiates process of
reasoning in RIS:
IF Application for Registration THEN Selected
Students by average
AND … AND Courses Selected

V x RuleInterpreter(x) =>
is_a(x,DeductiveReasoning) V
is_a(x,InductiveReasoning) V
is_a(x,AbductiveReasoning))
(Axiom Table 3)

V x RulesInterpreterRIS (x) => is_a(x,DeductiveReasoning)
For example: IF exist Application for Registration
THEN activarte Rules of Register Order, StudentSatus, Courses
Precedence, Classroom Capacity and exception rules

The rules interpreter makes deductive reasoning

V xReasoningMechanism(x) =>
is_a(x,RuleInterpreter) V is_a(x,RuleExecuter) V
is_a(x,RuleDeactivator)
(Axiom Table 3)

V x ReasoningMachineRIS(x) => has(x, InterpreterRulesRIS) Λ
has (x, ExecutionRulesRIS) Λ has(x, DesableRulesRIS)

The Reasoning Machine of RIS interprets,
executes and disabled rules

V x Conditions(x) => is_a (x,CombiningFacts) Λ
is_a (x,ActivationRules)
(Axiom Table 2)

V x ApplicationRegistration(x) => [is_a(x, Student) Λ is_a (x,
ApprovedCourses t) Λ is_a (x, CoursesToRegister t] Λ…] Λ [is_a
(x, RulesStatusStudent) Λ is_a (x, RulesCapacityCourses) Λ is_a
(x, RulesOrderRegistration) Λ …]

Initial condition: Student Registration

CommentaryLPOOperations

V x ActivationWay(x) => is_a (x, Immediate) V
is_a (x,Differed) V is_a(x,Disconnected)
(Axiom Table 3)

V x ActivationWayRIS (x) => is_a(x,InmediateRulesOfRIS)The activation Way of rules of RIS is immediate

V x RulesExecuter(x) =>
has(x,ConditionSelection) Λ
has(x,ActivationWay)
V x Rule(x) => has(x,Condition) Λ has(x,Action)
(Axioms Tables 2, 3)

V x RuleExecute(SelectionCourses) => has(x, ApplicationFor
Registration) Λ has(x, ActivationWay)
V x SelectionCourses(x) => Λ has(x, CONDITION (Courses to
Register, Courses Approved, Courses Precedence, Capacity
Courses, status Student, etc.)) Λ has(x,ACTION (Make
Registration))

Example of RulesSelectionCourses
IF SelectionCourses THEN RegisterStudent

V x RulesExecuter(x) =>
has(x,ConditionSelection) Λ
has(x,ActivationWay)
V x Rule(x) => has(x,Condition) Λ has(x,Action)
(Axioms Tables 2 and 3)

V x RulesExecuter (RulesOrderRegister) => has(x,
ApplicationFor Registration) Λ has(x,ActivationWay)
V x RegisterOrder(x) => has(x,
CONDITION(SelectionStudentByAverage)) Λ
has(x,ACTION(Set dates Registration
))

Example RulesRegisterOrder
IF SelectionStudentand Average THEN
Registration Dates Set

V x ConditionSelection(x) =>
is_a(x,LinkingToward) V
is_a(x,LinkingBackward)
(Axiom Table 3)

V x ApplicationFor Registration (x) => is_a(x, LinkingToward)
V x ApplicationFor Registration (x) => is_a (x,
RulesRegisterOrder) Λ …Λ is_a(x,RulesSelectionCourses)

Implementation Rule which initiates process of
reasoning in RIS:
IF Application for Registration THEN Selected
Students by average
AND … AND Courses Selected

V x RuleInterpreter(x) =>
is_a(x,DeductiveReasoning) V
is_a(x,InductiveReasoning) V
is_a(x,AbductiveReasoning))
(Axiom Table 3)

V x RulesInterpreterRIS (x) => is_a(x,DeductiveReasoning)
For example: IF exist Application for Registration
THEN activarte Rules of Register Order, StudentSatus, Courses
Precedence, Classroom Capacity and exception rules

The rules interpreter makes deductive reasoning

V xReasoningMechanism(x) =>
is_a(x,RuleInterpreter) V is_a(x,RuleExecuter) V
is_a(x,RuleDeactivator)
(Axiom Table 3)

V x ReasoningMachineRIS(x) => has(x, InterpreterRulesRIS) Λ
has (x, ExecutionRulesRIS) Λ has(x, DesableRulesRIS)

The Reasoning Machine of RIS interprets,
executes and disabled rules

V x Conditions(x) => is_a (x,CombiningFacts) Λ
is_a (x,ActivationRules)
(Axiom Table 2)

V x ApplicationRegistration(x) => [is_a(x, Student) Λ is_a (x,
ApprovedCourses t) Λ is_a (x, CoursesToRegister t] Λ…] Λ [is_a
(x, RulesStatusStudent) Λ is_a (x, RulesCapacityCourses) Λ is_a
(x, RulesOrderRegistration) Λ …]

Initial condition: Student Registration

CommentaryLPOOperations

V x RulesExecuter(x) =>
has(x,ConditionSelection) Λ
has(x,ActivationWay)
)
V x Rule(x) => has(x,Condition) Λ
has(x,Action)
(Axioms Tables 2 and 3)

V x
RulesExecute(AvailabilityClassroom) =>
has(x, OpenCourse) Λ
has(x,ActivationWay)
V x Classroom (x) => has(x,
CONDITION(AvailabilityClassroom))
Λ has(x,ACTION(OpeningCourse))

IF AvailabilityClassroom THEN
OpenCourse

V x RulesExecuter(x) =>
has(x,ConditionSelection) Λ
has(x,ActivationWay)
V x Rule(x) => has(x,Condition) Λ
has(x,Action)
(Axioms Tables 2 and 3)

V x RulesExecute(AvailibilityProfessor)
=> has(x, OpenCourse) Λ
has(x,ActivationWay)
V x ProfesorinCharge(x) => has(x,
CONDITION(AvailibilityProfessor)) Λ
has(x,ACTION(SetCourse))

IF Availability Professors THEN
OpenCourse

V x SimultaneousFiringOfRules (x)
=>
is_a(x,RandomSelectionofRules) V
is_a(x,UseOfPriorities) V
is_a(x,FixedActivationTime)
(Axiom table 4)

V x FiringSimultaneousRules(x) =>
is_a(x,RulesAvailabilityProfessors) Λ
is_a (x,RulesClassroomCapacity)

Firing simultaneously rules
We must prioritize between the two rules.
In this case , we first need to verify the
availability of professor, and then the
classroom capacity

V x ConditionSelection(x) =>
is_a(x,LinkingToward) V
is_a(x,LinkingBackward)
(Axiom Table 3)

V x OpeningCourses (x) => is_a(x,
LinkingToward)
V x OpeningCourses(x) =>
is_a (x,RulesAvailability Professors) Λ
… Λ is_a (x,RulesClassroom)

Implementation Rule which initiates
process of reasoning in RIS
IF OpeningCourse THEN Availibility
Classroom AND … AND Availability
Proffessors

V x Conditions(x) => is_a
(x,CombiningFacts) Λ is_a
(x,ActivationRules)
(Axiom Table 2)

V x OpeningCourses(x) => [is_a (x,
Course) Λ is_a (x, Program)] Λ is_a
(x,RulesAvailabilityProfessors) Λ is_a
(x,RulesClassroom) Λ …)

Initial condition: Opening courses

CommentaryLPOOperations

V x RulesExecuter(x) =>
has(x,ConditionSelection) Λ
has(x,ActivationWay)
)
V x Rule(x) => has(x,Condition) Λ
has(x,Action)
(Axioms Tables 2 and 3)

V x
RulesExecute(AvailabilityClassroom) =>
has(x, OpenCourse) Λ
has(x,ActivationWay)
V x Classroom (x) => has(x,
CONDITION(AvailabilityClassroom))
Λ has(x,ACTION(OpeningCourse))

IF AvailabilityClassroom THEN
OpenCourse

V x RulesExecuter(x) =>
has(x,ConditionSelection) Λ
has(x,ActivationWay)
V x Rule(x) => has(x,Condition) Λ
has(x,Action)
(Axioms Tables 2 and 3)

V x RulesExecute(AvailibilityProfessor)
=> has(x, OpenCourse) Λ
has(x,ActivationWay)
V x ProfesorinCharge(x) => has(x,
CONDITION(AvailibilityProfessor)) Λ
has(x,ACTION(SetCourse))

IF Availability Professors THEN
OpenCourse

V x SimultaneousFiringOfRules (x)
=>
is_a(x,RandomSelectionofRules) V
is_a(x,UseOfPriorities) V
is_a(x,FixedActivationTime)
(Axiom table 4)

V x FiringSimultaneousRules(x) =>
is_a(x,RulesAvailabilityProfessors) Λ
is_a (x,RulesClassroomCapacity)

Firing simultaneously rules
We must prioritize between the two rules.
In this case , we first need to verify the
availability of professor, and then the
classroom capacity

V x ConditionSelection(x) =>
is_a(x,LinkingToward) V
is_a(x,LinkingBackward)
(Axiom Table 3)

V x OpeningCourses (x) => is_a(x,
LinkingToward)
V x OpeningCourses(x) =>
is_a (x,RulesAvailability Professors) Λ
… Λ is_a (x,RulesClassroom)

Implementation Rule which initiates
process of reasoning in RIS
IF OpeningCourse THEN Availibility
Classroom AND … AND Availability
Proffessors

V x Conditions(x) => is_a
(x,CombiningFacts) Λ is_a
(x,ActivationRules)
(Axiom Table 2)

V x OpeningCourses(x) => [is_a (x,
Course) Λ is_a (x, Program)] Λ is_a
(x,RulesAvailabilityProfessors) Λ is_a
(x,RulesClassroom) Λ …)

Initial condition: Opening courses

CommentaryLPOOperations

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

107

D. Implementation in Protégé
Below, we show the ontology for IDB in Protégé OWL

(DL) [11]. The figure 5 shows the taxonomy for IDB (left
column). Here are defined the classes or concepts of the
ontology of the IDB. We can see that the database concepts,
operations and restrictions are subclasses of the IDB class.
This class hierarchy is called taxonomy.

 In OWL subclass means necessary implication. In other
words, if IntelligentDBConcepts is a subclass of
IntelligentDB, then all the instances (are called individual in
Protégé) of IntelligentDBConcepts are instances of
IntelligentDB without exception.

 In the column that says properties and restrictions is
shown the object properties that relate the concepts of IDB, as
well as their domain and range properties. The domain and
range property connects individuals of a domain with
individuals of a range. For example, the relationship property
hasIntelligentDBConcepts have domain IntelligentDB and
range IntelligentDBConcepts.
 The column that says superclass shows the superclass of
IntelligentDBConcepts (IntelligentDB). The classes
IntelligentDBConcepts, IntelligentDBOperations and
IntelligentDBRestriction are disjoint among them. This
guarantees that an individual that is member of one of the
classes in the group cannot be member of any other classes in
that group.

 All these properties and concepts define formally the
ontology for the IDB (domain, behaviour, etc.) in order to
allow inference processes over it.

Figure 5. Representation of the concepts and properties in

Protégé OWL (DL).
The figure 6 shows the individual (instance) of our

ontology in the study case (the RIS).

Figure 6. Individual of the IDB Ontology to describe the

rule base for the RIS
 The forms shown in figure 6 at the right half of the

screenshot are generated automatically from the class
definition. This figure shows an instance of the IDB Ontology,
with the rules and facts presented in Table 5. The existence of
this individual shows that the class is consistent and that the
properties are well defined (Protégé has a verification
procedure to guarantee that all individuals that have been
defined through it, would be semantically correct).

V. CONCLUSION
In this paper we consider as IDB the active and deductive

databases, and the knowledge based systems. We have
presented the ontological schemes that represent IDB
concepts, operations and restrictions, allowing the
incorporation of reasoning mechanisms to the IDB.

 We presented an example of utilization of our ontological
framework, using the sentence of predicate of first order of it
to describe a RIS. In addition, we explained the use of the RIS
described using framework in two operations. The reasoning
type used is the deductive, because from facts such as
approved courses the system deduces the possible courses to
register.

 In addition, this paper shows an initial implementation of
the IDB ontology in Protégé OWL. This implementation is not
complete and upcoming research to make integration of
databases will be made.

ACKNOWLEDGMENT
This work was supported by CDCHT-ULA grant I-820-05-

02-AA.

REFERENCES
[1] Baral C., Lobo J.; “Formal Characterization of Active Databases”,

Lecture Notes in Computer Science; Vol. 1154, pp: 175 – 195, 1996
[2] Bertino E., Catania B., Zarri Gian P.; “Intelligent Database System”,

Addison-Wesley. 2001.
[3] Eberhart A; “Ontology-based Infrastructure for Intelligent

Applications”, CiteSeer.ISTcientific Literature Digital Library, 2004
[4] El-Helw Amr, Aly Hussien H; “An Intelligent Database Application for

the Semantic Web”; CSITeA-04, Cairo - Egypt, 2004
[5] Gómez-Pérez Asunción, Fernández-López Mariano, Corcho Oscar;

“Ontological Engineering”, Springer-Verlag, 2004

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

 108

[6] Muñoz A., Aguilar J.; “Architecture for Distributed Intelligent
Databases”. IEEE, 13th Euromicro Conference on Parallel, Distributed
and Network-based Processing, Euromicro-PDP 2005, pp 322-328

[7] Muñoz A, Aguilar J., Martinez R, "Integration Ontology for Distributed
Database", Advanced Software Engineering: Expanding the Frontiers of
Software Technology (Ed. S.Ochoa, G. Roman), IFIP, Springer, 2006
pp. 85-93

[8] Muñoz A, Aguilar J., Martinez R., "Modelo Inteligente para Bases de
Datos Distribuidas", Revista Gerencia Tecnológica Informática
(electronic journal: www.cidlisuis.org/aedo), Instituto Tecnológico
Iberoamericano de Colombia, No. 10, Vol. 4, 2005 pp. 91-116,

[9] Ralston A, Reilly E, Encyclopedia of Computer Science and
Engineering, Thomson Learning, 1993

[10] Van Heijst et al; "Using Explicit Ontologies in KBS Development"
International Journal of Human and Computer Studies, 1996

[11] http://protege.stanford.edu/

Professor Ana Muñoz is a PhD student in the Computer
Science Department at ULA Venezuela. She gained her MSc
in Automation and Control in ULA and BSc in System
Engineering from the ULA. He is an Assistant Professor in
the Department of Technology at the Instituto Tecnológico
de Ejido. Professor. Muñoz has been a visiting

research/student in Murcia University in the ontology area. She has published
papers in the field of ontology and knowledge management. Her research
interests are in the areas of Ontology, Semantic Web, Federated Database and
knowledge management.

Professor Aguilar Jose received the B. S. degree in
System Engineering in 1987 (Universidad de Los Andes-
Venezuela), the M. Sc. degree in Computer Sciences in
1991 (Universite Paul Sabatier-France), and the Ph. D
degree in Computer Sciences in 1995 (Universite Rene

Descartes-France). He was a Postdoctoral Research Fellow in the Department
of Computer Sciences at the University of Houston (1999-2000). He is a
Titular Professor in the Department of Computer Science at the Universidad
de Los Andes. He has published more than 200 papers and 5 books, in the
field of parallel and distributed systems, computational intelligence, science
and technology management, etc. Dr. Aguilar has been a visiting
research/professor in different universities and laboratories, has been the
coordinator or inviting research in more than 20 research or industrial projects,
and has supervised more than 20 M. S. and Doctoral students in their thesis.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 1, 2007

